NEWS

Werth Knowing

Reducing Cone Beam and Scattered Radiation Artifacts

When measuring work pieces with high radiographic length or high material density, such as cylinder heads or turbine blades, scattered radiation and cone beam artifacts often occur.  They make inspection tasks more difficult and increase measurement uncertainty when capturing geometric […]

[READ MORE]

Werth Knowing

New Workpiece Changing System for TomoScope®

The workpiece changer for the TomoScope® line automatically feeds work pieces into the machine for optimal usage.  The work piece carriers are located in the device, so measurement sequences can be run during unattended shifts without having to make special […]

[READ MORE]

Werth Knowing

If the Standard Fails – Highly Precise Optical Measurements of the Smallest Features – 3

The WIP/RS provides for a highly precise roundness measurement with a rotating probe.  The probe is rotated only through the movement of the highly accurate sensor rotary axis.  The user can move probe from a middle position to an outer […]

[READ MORE]

Werth Knowing

If the Standard Fails – Highly Precise Optical Measurements of the Smallest Features – 2

The measuring probe is a light conducting glass fiber with a standard diameter of 125 µm, smaller probes are available.  By guiding the fiber in a metal tube, very long probes can be produced for larger immersion depths.  The Probe […]

[READ MORE]

Werth Knowing

If the Standard Fails – Highly Precise Optical Measurements of the Smallest Features

With conventional optical sensors, narrow and deep features, such as air gaps on electric motors or the roundness of fine injection nozzles, are often not measurable.  Laser distance sensors, chromatic focus sensors and confocal sensors fail as a result of […]

[READ MORE]

Archive