NEWS

Werth Knowing

The Future of Multisensor Coordinate Metrology-2

Measurement technology is increasingly being integrated in production processes. Functions such as the OnTheFly operating mode, wherein measurements can be performed with the image processing sensor while the machine axes are moving, allow high throughput. In the CT field machines […]

[READ MORE]

Werth Knowing

The Future of Multisensor Coordinate Metrology

The future points to increase integration. One example of this is the Werth Multisensor System, with conventional stylus systems, the fiber probe, and/or the contour probe, and accessories such as angle optics and ancillary lenses placed directly in the image […]

[READ MORE]

Werth Knowing

WinWerth 3D Graphic with Volume Rendering

The depiction of volumetric data is now integrated the WinWerth® measuring software’s 3D module. Three different views can be used at the same time and can be unhidden or hidden. This provides the option to show the entire volume, i.e. […]

[READ MORE]

Werth Knowing

A New Sensor: X-ray Computed Tomography – 2

The field of X-ray tomography in particular is seeing rapid advancements. A series of software correction methods are now available, so that sufficiently precise CT measurements are usually possible without Autocorrection.  With Auto correction, the measurement process is even suitable […]

[READ MORE]

Werth Knowing

A New Sensor: X-ray Computed Tomography

The first experiments for introducing computed tomography (CT) to coordinate metrology took place in the early 2000s. Unfortunately, the process was still much too imprecise, with measurement deviations in the range of tenths of millimeters. One early solution was the […]

[READ MORE]

Werth Knowing

From Image Processing to Multisensor System-3

Over the following years, the spectrum of optical distance sensors in particular was expanded. The laser distance sensors mentioned above were supplemented by chromatic focus sensors for measuring surface contours and flatness on reflective surfaces. That sensor determines the distance […]

[READ MORE]

Werth Knowing

From Image Processing to Multisensor System-2

Cooperation between medium-sized companies and universities and other research institutions is particularly well advanced in Germany.  Cooperative efforts between Werth Messtechnik and the Physikalisch Technische Bundesanstalt (PTB-the German National Institute of Metrology) in 1998 resulted in a tactile optical micro […]

[READ MORE]

Werth Knowing

From Image Processing to Multisensor System

As the diversity and complexity of work pieces increases, measurement tasks can often no longer be addressed with just one sensor.  Multisensor coordinate measuring machines are created by integrating various sensors in one measuring machine, each allowing individual adaptation to […]

[READ MORE]

Werth Knowing

Introduction of Digital Image Processing-2

Even after 20 years of image processing in coordinate metrology, revolutionary developments are still possible today.  For example, the Raster Scanning HD process presented in 2016 enables previously unknown measuring speeds while increasing accuracy.  To do so, images of the […]

[READ MORE]

Werth Knowing

Introduction of Digital Image Processing

PC technology in the early 1990s, with the first frame grabbers, was powerful enough to automate optical coordinate measuring machines. With a management buyout in 1993, now 25 years ago, business autonomy was reclaimed and Werth Messtechnik was the first […]

[READ MORE]

Werth Knowing

WinWerth® FormCorrect – a New 3D Correction Process for Work pieces

With FormCorrect, the exact work piece geometry is achieved by a mostly automatic correction of the CAD model.  The deviations between the original CAD model and the test work piece measurement data are directly determined by the WinWerth® measurement software […]

[READ MORE]

Werth Knowing

WinWerth® Profile Projector Function

The patented Raster Scanning HD method can be used to capture an entire work piece automatically at high resolution. A new function also makes it possible to overlay this raster image with the 2D CAD model in DXF format within […]

[READ MORE]

Werth Knowing

Aligning and Teaching with Just a Mouse Click

Creating measurement programs with 2D-CAD-Online® or 2D-CAD-Offline® is as simple as can be. These two options allow easy CAD-based measurements of 2D contours using the most appropriate sensor. The controls are integrated in the 3D graphic of the WinWerth® software […]

[READ MORE]

Werth Knowing

Reducing Cone Beam and Scattered Radiation Artifacts

When measuring work pieces with high radiographic length or high material density, such as cylinder heads or turbine blades, scattered radiation and cone beam artifacts often occur.  They make inspection tasks more difficult and increase measurement uncertainty when capturing geometric […]

[READ MORE]

Werth Knowing

New Workpiece Changing System for TomoScope®

The workpiece changer for the TomoScope® line automatically feeds work pieces into the machine for optimal usage.  The work piece carriers are located in the device, so measurement sequences can be run during unattended shifts without having to make special […]

[READ MORE]

Werth Knowing

If the Standard Fails – Highly Precise Optical Measurements of the Smallest Features – 3

The WIP/RS provides for a highly precise roundness measurement with a rotating probe.  The probe is rotated only through the movement of the highly accurate sensor rotary axis.  The user can move probe from a middle position to an outer […]

[READ MORE]

Werth Knowing

If the Standard Fails – Highly Precise Optical Measurements of the Smallest Features – 2

The measuring probe is a light conducting glass fiber with a standard diameter of 125 µm, smaller probes are available.  By guiding the fiber in a metal tube, very long probes can be produced for larger immersion depths.  The Probe […]

[READ MORE]

Werth Knowing

If the Standard Fails – Highly Precise Optical Measurements of the Smallest Features

With conventional optical sensors, narrow and deep features, such as air gaps on electric motors or the roundness of fine injection nozzles, are often not measurable.  Laser distance sensors, chromatic focus sensors and confocal sensors fail as a result of […]

[READ MORE]

Werth Knowing

Measuring Made Simple with PMI Support

Many CAD systems now offer the option of integrating PMI data (Product and Manufacturing Information). The resulting CAD data sets contain, in addition to geometric descriptions of the CAD elements, the dimensioning provided by the design engineer, including tolerances and […]

[READ MORE]

Werth Knowing

WinWerth® 8.42 – Many New Functions

The WinWerth® 8.42 measurement software offers a variety of new functions for multisensor systems and  X-ray tomography. For coordinate measuring machines with multisensor technology, in addition to PMI supported measuring, 2D-CAD-Online® and 2D-CAD-Offline® have been integrated into the 3D graphic. […]

[READ MORE]

Werth Knowing

Werth Interferometer Probe WIP – Highly Precise Optical Measurements of the Smallest Features

If the standard fails, the long measuring probes of the Werth Interferometer Probe WIP enable measurements of tightly toleranced geometrical characteristics. Probe geometry and exit angle can be manufactured for the individual requirements of the measuring task, for example for […]

[READ MORE]

Werth Knowing

WinWerth® 8.42 – Many New Functions

The WinWerth® 8.42 measurement software by Werth Messtechnik offers a variety of new functions for multisensor systems and X-ray tomography. For coordinate measuring machines with multisensor technology, in addition to PMI supported measuring, 2D-CAD-Online® and 2D-CAD-Offline® have been integrated into […]

[READ MORE]

Werth Knowing

WinWerth® 3D Graphics with Volume Rendering

With the new feature VolumeCheck, Werth Messtechnik has integrated the depiction of volumetric data into the WinWerth® measuring software’s 3D module. Three different views can be used at the same time and can be unhidden or hidden. This provides the […]

[READ MORE]

Werth Knowing

Find out what is new

… discover new products and possibilities in the new MultiSensor Magazine which was just released at the 2018 Control Show in Stuttgart, Germany.  

[READ MORE]

Werth Knowing

Werth Inspector® FQ – Measuring at the Acceleration of Gravity

Due to its high measuring speed, the Inspector®  FQ handles applications for conventional coordinate measuring machines that would never have been considered before because of excessively long measurement times. This flexible machine replaces manual gages or gaging fixtures, for example when […]

[READ MORE]

Werth Knowing

World’s Most Accurate Coordinate Measuring Machine with Computed Tomography Sensor – Werth TomoCheck® S HA

The new TomoCheck® S HA (High Accuracy) from Werth Messtechnik GmbH has impressive new features. By combining transmission tubes with up to 225 kV acceleration voltage and large, high-resolution detectors, both multi-material assemblies and large-volume workpieces can be measured at high […]

[READ MORE]

Werth Knowing

Specifications and Acceptance Tests – 3

The operating parameters must be precisely specified for the length measurement error as well. The parameters must also be specified and tested for the operating modes measurement “in the image” and measurement “at the image” (e.g. raster tomography). It is […]

[READ MORE]

Werth Knowing

Specifications and Acceptance Tests – 2

The use of multidimensional standards, such as spatial arrays of spheres on pins, is particularly efficient.  This  type of standard can be used to check many or even  all  of  the  lengths  required  to  test the  coordinate  measuring machine against […]

[READ MORE]

Werth Knowing

Specifications And Acceptance Tests – 1

Starting with the DIN EN ISO 10360 international series of standards, the Association of German Engineers (Verein  Deutscher  Ingenieure: VDI) has developed a guideline for acceptance testing of coordinate measuring machines  with  X-ray  tomography. This has  been  integrated  both  in […]

[READ MORE]

Werth Knowing

Spiral Tomography

Using spiral (better helical) tomography, the cone beam artifacts that arise in conventional cone beam tomography can be prevented.  This works by moving the measured object along the rotary axis as it rotates.  In spiral tomography, each layer of the […]

[READ MORE]

Werth Knowing

Dual-Spectra Tomography

In coordinate measuring technology with computed tomography, the dimensional analysis of work pieces made of  multiple materials is particularly challenging.  Multi-material work pieces are often metal and plastic components, such as assembled plug connectors.  The measurement task is typically to […]

[READ MORE]

Werth Knowing

Eccentric, Region of Interest, and Multi-ROI Tomography

Eccentric Tomography (a) now makes it possible to place the work piece arbitrarily on the rotary table.  This eliminates the laborious and time consuming alignment of the work piece, making measurements more convenient and efficient.  The measuring software automatically calculates […]

[READ MORE]

Werth Knowing

Noise

The basic physical effect of the working principle of X-ray sensors is the conversion of light energy into electrical charge. This conversion occurs due to the photoelectric effect. Because this is a statistical process, not every photon is converted into […]

[READ MORE]

Werth Knowing

Resolution

When discussing resolution in the field of coordinate measuring technology, two categories must be fundamentally differentiated: structural (or spatial) resolution and positional (or metrological) resolution. The structural resolution defines how small structures on the measured object can be and still […]

[READ MORE]

Werth Knowing

Cone Beam Geometry – 2

Cone beam artifacts can be completely avoided with the use of spiral  tomography. In this special process, a translational motion is performed in the direction of the rotary axis at the same time as the rotation of the object. The […]

[READ MORE]

Werth Knowing

Cone Beam Geometry – 1

For cone beam tomography, the ideal beam geometry (fan beam) is purposefully altered to increase energy efficiency and reduce measurement time. This means that the ideal beam geometry is found only in the center plane. It is defined as the […]

[READ MORE]

Werth Knowing

Scattered Radiation

When the X-rays are attenuated in the material, due to Compton scattering, incident X- ray photons are deflected (scattered) from their original direction of travel by electrons of the penetrated material and are therefore subject to a loss of energy […]

[READ MORE]

Werth Knowing

Beam Hardening – 2

Beam hardening is not considered in the mathematical principle of X-ray tomography.  The measurement errors that result from this are known as beam hardening artifacts.  Their magnitude depends on the material and geometry of the measured object. Beam hardening can […]

[READ MORE]

Werth Knowing

Beam Hardening – 1

The radiation generated in an X-ray tube is not monochromatic.  Similar to the visible light of an incandescent lamp, it is a continuous radiation spectrum with a particular bandwidth (bremsstrahlung or “braking radiation” from German “bremsen”: to brake and Strahlung”: […]

[READ MORE]

Werth Knowing

Inspecting the Material Structure – 4

With special software, assemblies can also be inspected. Assembly errors can be easily detected or the assembly can be shown in various functional states. It is also possible to virtually disassemble the components and to investigate them (e.g. to analyze […]

[READ MORE]

Werth Knowing

Inspecting the Material Structure – 3

Software tools exist for crack testing, for example.  Material irregularities of fibers can also be visualized.  To analyze the flow behavior of glass fibers, very high resolution is required.

[READ MORE]

Werth Knowing

Inspecting the Material Structure – 2

Special software tools are used to automatically identify voids and cracks inside measured objects. These can be detected, classified by size, and counted according to their classification. Fully automatic analysis, with tolerance, can be performed. The voids that have been […]

[READ MORE]

Werth Knowing

Inspecting the Material Structure – 1

To provide a way for users of coordinate measuring machines with X-ray tomography to perform material inspections, as known from earlier tomography inspection systems, suitable software tools are provided for material analysis. They are based on direct analysis of the […]

[READ MORE]

Werth Knowing

Autocorrection – 3

The reproducibility of the measured diameters of such a spray hole, using sections at intervals of about 20µm and measured five times (a). The reproducibility results are better than 1µm. If these results are compared to calibration measurements (b), systematic […]

[READ MORE]

Werth Knowing

Autocorrection – 2

When measuring injector components for diesel engines, for example, diameter tolerances of better than 5µm are required. To measure these tolerances reliably (measurement process capability), it is necessary to ensure measurement errors less than 0.5 µm. One prerequisite for achieving […]

[READ MORE]

Werth Knowing

Autocorrection – 1

Objects made of materials that are relatively easy to penetrate with dimensions that are not too large and with average precision requirements can be measured using X-ray tomography with sufficient accuracy. For special tasks, such as measuring components with tight […]

[READ MORE]

Werth Knowing

Multisensor Measurements – 3

Prior to measuring with several sensors on one coordinate measuring machine, the offset positions of the sensors must be determined. A standard is measured using all the sensors that will be used. The material of this standard must reflect optical […]

[READ MORE]

Werth Knowing

Multisensor Measurements – 2

A similar approach can be used as an alternative to the Dual-Spectra Tomography for economically measuring plastic parts with embedded metal. In this case, only the internal metallic components are measured with the X-ray sensor, using high energy X-rays.  The […]

[READ MORE]

Werth Knowing

Multisensor Measurements – 1

The combination of X-ray sensors and tactile or optical sensors in one coordinate measuring machine results in new potential applications.  For various measurement tasks, other sensors besides the X-ray sensor can be integrated in the measurement programs. The image processing sensor, […]

[READ MORE]

Werth Knowing

Measurement and Comparison in Sections – 3

As an alternative approach 2D measurements can be taken directly in the X-ray image for certain work pieces. To do this, it is necessary to determine the local magnification in the X-ray beam path as precisely as possible. Geometric elements […]

[READ MORE]

Copyright © 2023 | Werth Inc | (860) 399-2445 | 8 Custom Drive, Old Saybrook, CT 06475